Some remarks on L-type mappings

Bożena Piątek

Department of Mathematics, Silesian University of Technology, POLAND

International Workshop on NONLINEAR ANALYSIS AND ITS APPLICATIONS 2023

Bożena Piątek L-type nonexpansive mappings

C – convex weakly-compact subset of a Banach space B

Definition

Diameter of C: diam(C) := sup{||x - y||: $x, y \in C$ }.

< 注 → < 注 → …

臣

C – convex weakly-compact subset of a Banach space B

Definition

Diameter of C: diam(C) := sup{||x - y||: $x, y \in C$ }.

Definition

$$r_x(C) := \sup\{ \|x - y\| : y \in C \}.$$

We do not assume that $x \in C$.

★ E ► ★ E ►

E

C – convex weakly-compact subset of a Banach space B

Definition

Diameter of C: diam(C) := sup{||x - y||: $x, y \in C$ }.

Definition

$$r_x(C) := \sup\{ \|x - y\| : y \in C \}.$$

We do not assume that $x \in C$.

Definition

Chebyshev's radius of C: $r(C) := \inf\{r_x(C): x \in B\}.$

The same definitions work in the case of a bounded subset of a metric space.

・ロト ・回ト ・ヨト ・ヨト

Definition

A point $x \in C$ is called **diametral** if $r_x(C) = \text{diam}(C)$. Otherwise, the point is called nondiametral.

< 注 → < 注 → …

臣

Definition

A point $x \in C$ is called **diametral** if $r_x(C) = \text{diam}(C)$. Otherwise, the point is called nondiametral.

Definition

A Banach space has normal structure if each $C \subset B$ containing more than one point **contains** a nondiametral point, i.e., a point $\bar{x} \in C$:

 $r_{\bar{x}}(C) < \operatorname{diam}(C).$

イヨトィヨト

Definition

A point $x \in C$ is called **diametral** if $r_x(C) = \text{diam}(C)$. Otherwise, the point is called nondiametral.

Definition

A Banach space has normal structure if each $C \subset B$ containing more than one point **contains** a nondiametral point, i.e., a point $\bar{x} \in C$:

 $r_{\bar{x}}(C) < \operatorname{diam}(C).$

Lemma

B does not have normal structure if and only if it contains a **diametral sequence**, that is, the sequence (x_n) for which:

$$\operatorname{\mathsf{lim}}\operatorname{\mathsf{dist}}(x_{n+1}, \bar{\operatorname{co}}\{x_1, \ldots, x_n\}) = \operatorname{\mathsf{diam}}\{x_1, x_2, \ldots\}.$$

Let us consider l^2 with $|x|_R :=$

< 注 → < 注 → --

臣

DQC

Let us consider I^2 with

$$|x|_{R} := \max\{||x||_{2}, R||x||_{\infty}\}, \qquad R > 0.$$

▶ < Ξ ▶</p>

< E

臣

900

Let us consider I^2 with

$$|x|_{R} := \max\{||x||_{2}, R||x||_{\infty}\}, \qquad R > 0.$$

Indeed,

< 注 → < 注 → …

Let us consider I^2 with

$$|x|_{R} := \max\{||x||_{2}, R||x||_{\infty}\}, \qquad R > 0.$$

Lemma $(l^2, |\cdot|_R)$ has normal structure iff $R < \sqrt{2}$.

Indeed, $\{e_n\}_{n=1}^{\infty}$ is a diametral sequence for $R \ge \sqrt{2}$:

Let us consider I^2 with

$$|x|_{R} := \max\{||x||_{2}, R||x||_{\infty}\}, \qquad R > 0.$$

Lemma $(l^2, |\cdot|_R)$ has normal structure iff $R < \sqrt{2}$.

Indeed, $\{e_n\}_{n=1}^{\infty}$ is a diametral sequence for $R \ge \sqrt{2}$: let $x = \sum_{j=1}^{n} \lambda_j e_j$, then

• E • • E • · ·

Let us consider I^2 with

$$|x|_{R} := \max\{||x||_{2}, R||x||_{\infty}\}, \qquad R > 0.$$

Lemma $(l^2, |\cdot|_R)$ has normal structure iff $R < \sqrt{2}$.

Indeed, $\{e_n\}_{n=1}^{\infty}$ is a diametral sequence for $R \ge \sqrt{2}$: let $x = \sum_{j=1}^{n} \lambda_j e_j$, then

$$|e_{n+1} - x|_{R} = \max\{\sqrt{1 + ||x||_{2}^{2}}, R\}.$$

• E • • E • · ·

Definition

Let $T: C \to C$ be any mapping. The sequence (a_n) is called an approximate fixed point sequence of T (afps in short) if

$$\limsup \|T(a_n) - a_n\| \to 0.$$

★ E ► ★ E ►

臣

Definition

Let $T: C \to C$ be any mapping. The sequence (a_n) is called an approximate fixed point sequence of T (afps in short) if

$$\limsup \|T(a_n) - a_n\| \to 0.$$

Definition

 $T: C \rightarrow C$ is called asymptotically regular if

$$\|T^n x - T^{n+1} x\| \to 0, \qquad x \in C.$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Definition

Let $T: C \to C$ be any mapping. The sequence (a_n) is called an approximate fixed point sequence of T (afps in short) if

$$\limsup \|T(a_n) - a_n\| \to 0.$$

Definition

 $T: C \rightarrow C$ is called asymptotically regular if

$$||T^n x - T^{n+1} x|| \to 0, \qquad x \in C.$$

Conclusion

An asymptotically nonexpansive mapping T has afps: $a_n = T^n(x), x \in C.$

Definition

$$T: C \to C$$
 is called an L-type mapping if

- 1. for each closed convex and T-invariant set $C_0 \subset C$: there is afps of T in C_0 ;
- 2. for each (a_n) afps of T and each $x \in C$:

$$\limsup \|T(x) - a_n\| \leq \limsup \|x - a_n\|.$$

臣

★ E ► < E ► ...</p>

Definition

$$T: C \to C$$
 is called an L-type mapping if

- for each closed convex and *T*-invariant set C₀ ⊂ C: there is afps of *T* in C₀;
- 2. for each (a_n) afps of T and each $x \in C$:

$$\limsup \|T(x) - a_n\| \leq \limsup \|x - a_n\|.$$

Definition

 $T: C \rightarrow C$ is called a quasi-nonexpansive mapping if for each fixed point x_0 :

$$||x_0 - T(x)|| \leq ||x_0 - x||, \qquad \forall x \in C_0.$$

Theorem (Llorens-Fuster, Moreno-Galvez, 2011)

Let *B* be a Banach space with a normal structure and $C \subset B$. Then each L-type nonexpansive mapping $T: C \to C$ has a fixed point.

- E - - E -

Theorem (Llorens-Fuster, Moreno-Galvez, 2011)

Let *B* be a Banach space with a normal structure and $C \subset B$. Then each L-type nonexpansive mapping $T: C \to C$ has a fixed point.

Claim (Llorens-Fuster, Moreno-Galvez, 2011)

There is a continuous quasi-nonexpansive mapping defined on a compact convex set, which is not of L-type.

Example

Let $X=\{[0,1]\times [0,1],\|\cdot\|_\infty\}$ and

T((x,y)) =

▲圖▶ ▲臣▶ ▲臣▶

Ξ

DQC

Example

Let $X = \{[0,1] \times [0,1], \|\cdot\|_\infty\}$ and

$$T((x,y)) = \begin{cases} (\min\{x+y/4,1\},y), & y > 0\\ (\min\{x+1/2,1\},0), & y = 0 \end{cases}$$

.

▲御▶ ▲臣▶ ▲臣▶

Ξ

Example

Let $X = \{[0,1] \times [0,1], \|\cdot\|_\infty\}$ and

$$T((x,y)) = \begin{cases} (\min\{x+y/4,1\},y), & y > 0\\ (\min\{x+1/2,1\},0), & y = 0 \end{cases}$$

.

▲□ ▶ ▲ 国 ▶ ▲ 国 ▶

Ξ

•
$$(x, y)$$
 is a fixed point $\Leftrightarrow x = 1$.

Example

Let $X = \{[0,1] imes [0,1], \|\cdot\|_\infty\}$ and

$$T((x,y)) = \begin{cases} (\min\{x+y/4,1\},y), & y > 0\\ (\min\{x+1/2,1\},0), & y = 0 \end{cases}$$

.

▲□ ▼ ▲ 田 ▼ ▲ 田 ▼

Ξ

Example

Let
$$X = \{[0,1] \times [0,1], \| \cdot \|_{\infty}\}$$
 and

$$T((x,y)) = \begin{cases} (\min\{x+y/4,1\},y), & y > 0\\ (\min\{x+1/2,1\},0), & y = 0 \end{cases}$$

.

Э

•
$$(x, y)$$
 is a fixed point $\Leftrightarrow x = 1$.

T is not continuous.

•
$$(a_n)$$
, with $a_n = (0, 1/n)$, is afps of T

Example

Let $X = \{[0,1] \times [0,1], \|\cdot\|_\infty\}$ and

$$T((x,y)) = \begin{cases} (\min\{x+y/4,1\},y), & y > 0\\ (\min\{x+1/2,1\},0), & y = 0 \end{cases}$$

.

白 ト イヨト イヨト

臣

•
$$(x, y)$$
 is a fixed point $\Leftrightarrow x = 1$.

- T is not continuous.
- (a_n) , with $a_n = (0, 1/n)$, is afps of T and $a_n \rightarrow (0, 0)$.

Example

Let $X = \{[0,1] \times [0,1], \|\cdot\|_\infty\}$ and

$$T((x,y)) = \begin{cases} (\min\{x+y/4,1\},y), & y > 0\\ (\min\{x+1/2,1\},0), & y = 0 \end{cases}$$

•
$$(x, y)$$
 is a fixed point $\Leftrightarrow x = 1$.

T is not continuous.

•
$$(a_n)$$
, with $a_n = (0, 1/n)$, is afps of T and $a_n \rightarrow (0, 0)$.

Revised claim

Each continuous quasi-nonexpansive mapping, defined on a compact convex set, is of L-type.

▶ < Ξ ▶ ...</p>

臣

5990

Example

C is diametral set.

★国ト

臣

DQC

Example

C is diametral set. From Lemma there is (x_n) – a diametral sequence in C. Let

< ≣ ►

E

Example

C is diametral set. From Lemma there is (x_n) – a diametral sequence in C. Let

 $K = \bar{co}\{x_n : n \in \mathbb{N}\}.$

Then:

Bożena Piątek L-type nonexpansive mappings

▲ 문 ▶ ▲ 문 ▶

3

Example

C is diametral set. From Lemma there is (x_n) – a diametral sequence in C. Let

$$K = \bar{co}\{x_n : n \in \mathbb{N}\}.$$

Then:

 $d = \min\{\|x_i - x_j\| : i \neq j\} > 0.$

- 3 ≥ ≥

3

Example

C is diametral set. From Lemma there is (x_n) – a diametral sequence in C. Let

$$K = \bar{co}\{x_n : n \in \mathbb{N}\}.$$

Then:

$$d = \min\{||x_i - x_j|| : i \neq j\} > 0.$$

Let $B_n = B(x_n, d/3) \cap K$ and $a_n \in B_n$:

물 에 세 물 에

E

Example

C is diametral set. From Lemma there is (x_n) – a diametral sequence in C. Let

$$K = \bar{co}\{x_n : n \in \mathbb{N}\}.$$

Then:

$$d = \min\{||x_i - x_j|| : i \neq j\} > 0.$$

Let $B_n = B(x_n, d/3) \cap K$ and $a_n \in B_n$:
 $||a_n - x_n|| < 1/n.$

→ ▲ 문 ▶

E

Bożena Piątek L-type nonexpansive mappings

シック・ 川 ・山・山・山・ 白・

Example

$$T(x) = \begin{cases} x_{n+1}, & x = B_n \setminus \{a_n\} \\ x_n, & x = a_n \\ x_1, & \text{otherwise} \end{cases}$$

٠

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへぐ

$$T(x) = \begin{cases} x_{n+1}, & x = B_n \setminus \{a_n\} \\ x_n, & x = a_n \\ x_1, & \text{otherwise} \end{cases}$$

٠

(ロ)、<回)、<E)、<E)、
E)

590

$$T(x) = \begin{cases} x_{n+1}, & x = B_n \setminus \{a_n\} \\ x_n, & x = a_n \\ x_1, & \text{otherwise} \end{cases}$$

٠

<ロト < 四ト < 臣ト < 臣ト

E

5900

Clearly,

► K is minimal T-invariant set;

$$T(x) = \begin{cases} x_{n+1}, & x = B_n \setminus \{a_n\} \\ x_n, & x = a_n \\ x_1, & \text{otherwise} \end{cases}$$

.

Image: A matrix

< 注 → < 注 → …

Э

- ► *K* is minimal T-invariant set;
- (a_n) is a unique afps of T;

$$T(x) = \begin{cases} x_{n+1}, & x = B_n \setminus \{a_n\} \\ x_n, & x = a_n \\ x_1, & \text{otherwise} \end{cases}$$

.

< ∃ >

-

臣

- K is minimal T-invariant set;
- (a_n) is a unique afps of T;
- T is not continuous;

$$T(x) = \begin{cases} x_{n+1}, & x = B_n \setminus \{a_n\} \\ x_n, & x = a_n \\ x_1, & \text{otherwise} \end{cases}$$

.

< 臣 → 三臣

< Ξ

- K is minimal T-invariant set;
- (a_n) is a unique afps of T;
- T is not continuous;
- T is of L-type;

$$T(x) = \begin{cases} x_{n+1}, & x = B_n \setminus \{a_n\} \\ x_n, & x = a_n \\ x_1, & \text{otherwise} \end{cases}$$

.

★国ト

< Ξ

臣

- K is minimal T-invariant set;
- (a_n) is a unique afps of T;
- T is not continuous;
- T is of L-type;

•
$$Fix\{T\} = \emptyset$$
.

→ E + < E +</p>

÷,

臣

590

Question (Betiuk-Pilarska, Wiśnicki, 2013)

Which conditions imply the existence of fixed points for L-mappings?

-> -< ≣ >

Question (Betiuk-Pilarska, Wiśnicki, 2013)

Which conditions imply the existence of fixed points for L-mappings?

Problem

Can we find $C \subset B$ and a continuous L-mapping $T: C \rightarrow C$ without fixed points while B does not have a normal structure?

A E F.

Question (Betiuk-Pilarska, Wiśnicki, 2013)

Which conditions imply the existence of fixed points for L-mappings?

Problem

Can we find $C \subset B$ and a continuous L-mapping $T: C \to C$ without fixed points while B does not have a normal structure?

YES, but the mapping is not asymptotically regular.

→ E → < E →</p>

A. Betiuk-Pilarska and A. Wiśnicki On the Suzuki nonexpansive-type mappings Ann. Funct. Anal. 4 (2013), 72–86.

E. Llorens-Fuster and E. Moreno-Gálvez The fixed point theory for some generalized nonexpansive mappings Abstr. Appl. Anal. 2011 (2011), Article ID 435686, 15 pages.

B. Piatek,

Some generalized nonexpansive mappings and weak normal structure

Topol. Meth. Nonlinear Anal., to appear.

Thank you very much for your attention