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C – convex weakly-compact subset of a Banach space B

Definition

Diameter of C :
diam(C ) := sup{∥x − y∥ : x , y ∈ C}.

Definition

rx(C ) := sup{∥x − y∥ : y ∈ C}.
We do not assume that x ∈ C .

Definition

Chebyshev’s radius of C :
r(C ) := inf{rx(C ) : x ∈ B}.

The same definitions work in the case of a bounded subset of
a metric space.
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Definition

A point x ∈ C is called diametral if rx(C ) = diam(C ). Otherwise,
the point is called nondiametral.

Definition

A Banach space has normal structure if each C ⊂ B containing
more than one point contains a nondiametral point, i.e., a point
x̄ ∈ C :

rx̄(C ) < diam(C ).

Lemma

B does not have normal structure if and only if it contains
a diametral sequence, that is, the sequence (xn) for which:

lim dist(xn+1, c̄o{x1, . . . , xn}) = diam{x1, x2, . . .}.
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Simple example – James’ renorming of l2

Let us consider l2 withx
R
:=

max{∥x∥2,R∥x∥∞}, R > 0.

Lemma(
l2,
 ·

R

)
has normal structure iff R <

√
2.

Indeed, {en}∞n=1 is a diametral sequence for R ­
√
2:

let x =
∑n

j=1 λjej , thenen+1 − x


R
= max{

√
1+ ∥x∥22,R}.
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Mappings

Definition

Let T : C → C be any mapping. The sequence (an) is called
an approximate fixed point sequence of T (afps in short)
if

lim sup ∥T (an)− an∥ → 0.

Definition

T : C → C is called asymptotically regular if

∥T nx − T n+1x∥ → 0, x ∈ C .

Conclusion

An asymptotically nonexpansive mapping T has afps:
an = T n(x), x ∈ C .
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Mappings

Definition

T : C → C is called an L-type mapping
if

1. for each closed convex and T -invariant set C0 ⊂ C :
there is afps of T in C0;

2. for each (an) – afps of T and each x ∈ C :

lim sup ∥T (x)− an∥ ¬ lim sup ∥x − an∥.

Definition

T : C → C is called a quasi-nonexpansive mapping
if for each fixed point x0:

∥x0 − T (x)∥ ¬ ∥x0 − x∥, ∀x ∈ C0.
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Known results

Theorem (Llorens-Fuster, Moreno-Galvez, 2011)

Let B be a Banach space with a normal structure and C ⊂ B.
Then each L-type nonexpansive mapping T : C → C has a fixed
point.

Claim (Llorens-Fuster, Moreno-Galvez, 2011)

There is a continuous quasi-nonexpansive mapping defined on
a compact convex set, which is not of L-type.
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Compact domain

Example

Let X = {[0, 1]× [0, 1], ∥ · ∥∞} and

T ((x , y)) =

{
(min{x + y/4, 1}, y), y > 0
(min{x + 1/2, 1}, 0), y = 0

.

▶ (x , y) is a fixed point ⇔ x = 1.
▶ T is not continuous.
▶ (an), with an = (0, 1/n), is afps of T and an → (0, 0).

Revised claim

Each continuous quasi-nonexpansive mapping, defined on
a compact convex set, is of L-type.
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Based on Kassay’s example, we can get:

Example

C is diametral set.
From Lemma there is (xn) – a diametral sequence in C .
Let

K = c̄o{xn : n ∈ N}.

Then:
d = min{∥xi − xj∥ : i ̸= j} > 0.
Let Bn = B(xn, d/3) ∩ K and an ∈ Bn:
∥an − xn∥ < 1/n.
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Example

T (x) =


xn+1, x = Bn \ {an}
xn, x = an
x1, otherwise

.

Clearly,
▶ K is minimal T-invariant set;
▶ (an) is a unique afps of T ;
▶ T is not continuous;
▶ T is of L-type;
▶ Fix{T} = ∅.
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L – mappings

This answers the following question:

Question (Betiuk-Pilarska, Wiśnicki, 2013)

Which conditions imply the existence of fixed points for
L-mappings?

Problem

Can we find C ⊂ B and a continuous L-mapping T : C → C
without fixed points while B does not have a normal structure?

YES, but the mapping is not asymptotically regular.
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Thank you very much
for your attention
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