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A well known result in nonlinear analysis is the Birkhoff-Kellogg
invariant-direction Theorem [4], cf. [16, Theorem 6.1].

Theorem 1 (Birkhoff-Kellogg)

Let U be a bounded open neighborhood of 0 in an

infinite-dimensional normed linear space (V , ∥ ∥), and let

T : ∂U → V be a compact map satisfying ∥T (x)∥ ≥ α for some

α > 0 for every x in ∂U. Then there exist x0 ∈ ∂U and

λ0 ∈ (0,+∞) such that x0 = λ0T (x0).

This theorem has been object of deep studies in the past, with
applications and extensions in several directions,
e.g. [2, 5, 10, 12, 13, 14, 15, 17, 24, 26, 30, 29] and references
therein. In particular [12, 24, 30] provide interesting applications to
the existence of eigenvalues and eigenfunctions of elliptic BVPs.
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We use of the following result, which is set in cones.

A cone K of a real Banach space (X , ∥ ∥) is a closed set with
K + K ⊂ K , µK ⊂ K for all µ ≥ 0 and K ∩ (−K ) = {0}.

We set Kr := {x ∈ K : ∥x∥ < r}, K r := {x ∈ K : ∥x∥ ≤ r},
∂Kr := {x ∈ K : ∥x∥ = r}.

Theorem 2 (Krasnosel’skĭi and Ladyženskĭı)

Let (X , ∥ ∥) be a real Banach space, let T : K r → K be compact

and suppose that

inf
x∈∂Kr

∥Tx∥ > 0.

Then there exist λ0 ∈ (0,+∞) and x0 ∈ ∂Kr such that

x0 = λ0Tx0.
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A classical application of Theorem 2 can be found in the book of
Guo and Lakshmikantham [18] for the case of the nonlinear
eigenvalue problem

u′′(t) = λf (u(t)), t ∈ (0, 1); u(0) = u(1) = 0; (1)

the BVP(1) is rewritten as an eigenvalue problem in a suitable
cone of positive functions in C [0, 1].

Theorem 2 has been utilized by GI in [19] to prove the existence of
positive eigenvalues with associated eigenfunctions that are allowed
to change sign for a set of three-point BVPs including a nonlocal
version of (1), namely

u′′(t) = λf (u(t)); u(0) = 0, u(1) = αu(η), η ∈ (0, 1). (2)
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More recently, Theorem 2 has been used by GI [20] to study the
existence of eigenvalues and positive eigenfunctions of the system
of second order elliptic functional differential equations subject to
functional boundary conditions{

Liui = λfi (x , u,Du,wi [u]), in Ω, i = 1, 2, . . . , n,
Biui = λζi (x)hi [u], on ∂Ω, i = 1, 2, . . . , n,

(3)

where Ω ⊂ Rn is a bounded domain with a sufficiently smooth
boundary, Li is a strongly uniformly elliptic operator, Bi is a first
order boundary operator, u = (u1, . . . , un), Du = (∇u1, . . . ,∇un),
fi are continuous functions, ζi are sufficiently regular functions, wi

and hi are suitable compact functionals.
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In the context of higher order equations of ODEs, Theorem 2 has
been used by GI [20] in order to discuss the solvability of the
parameter-dependent BVP

u(4)(t) = λf (t, u(t), u′(t), u′′(t), u′′′(t)), t ∈ (0, 1),

u(0) = u′(0) = u′′(1) = 0,

u′′′(1) + λH[u] = 0,

(4)

where f is a continuous function, H is a suitable compact
functional in the space C 3[0, 1] and λ is a non-negative parameter.
The BVP (4) can be used as a model for a cantilever bar.
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When H[u] ≡ 0 it models a bar of length 1 is clamped on the left
end and the right end is free to move with vanishing bending
moment and shearing force, see for example [1, 27, 34].

Under a mechanical point of view, interesting cases appear when

the shearing force at the right side of the beam does not vanish,

see for example GI and Pietramala [22]:

u′′′(1) + k0 = 0 models a force acting in 1,

u′′′(1) + k1u(1) = 0 describes a spring in 1,

u′′′(1) + g(u(1)) = 0 models a spring with a strongly

nonlinear rigidity,

u′′′(1) + g(u(η)) = 0 describes a feedback mechanism, where

the spring reacts to the displacement registered in a point η of

the beam.

G. Infante Birkhoff-Kellogg type results



Introduction
Affine cones
References

By means of critical point theory Cabada and Terzian [6] and
Bonanno, Chinǹı and Terzian in [3] studied the
parameter-dependent BVP

u(4)(t) = λf (t, u(t)), t ∈ (0, 1),

u(0) = u′(0) = u′′(1) = 0,

u′′′(1) + λg(u(1)) = 0.

(5)

Insofar as the generality of BCs is concerned, by classical fixed
point index, Cianciaruso, GI and Pietramala in [9] studied the BVP

u(4)(t) = f (t, u(t)), t ∈ (0, 1),

u(0) = u′(0) = u′′(1) = 0,

u′′′(1) + H(u) = 0,

(6)

where H is a suitable functional (non necessarily linear) on C [0, 1].
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Regarding higher order dependence, the ODE

u(4)(t) = f (t, u(t), u′(t), u′′(t), u′′′(t)), t ∈ [0, 1]

under the homogeneous BCs

u(0) = u′(0) = u′′(1) = u′′′(1) = 0

has been studied by Li [27] via fixed point index, while the
non-homogeneous case

u(0) = u′(0) = u′′(1) = 0, u′′′(1) + g(u(1)) = 0

has been studied by Wei, Li and Li [32] and the case

u(0) = u′(0) =

∫ 1

0
p(t)u(t) dt, u′′(1) = u′′′(1) =

∫ 1

0
q(t)u′′(t) dt,

has been investigated by Khanfer and Bougoffa [23] via the
Schauder fixed point theorem.
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It is known (see for example Lemma 2.1 and Lemma 2.2 of [27])
that for h ∈ C [0, 1] the unique solution of the linear BVP{

u(4)(t) = h(t), t ∈ (0, 1),

u(0) = u′(0) = u′′(1) = u′′′(1) = 0,

is given by

u(t) =

∫ 1

0
k(t, s)h(s) ds, (7)

where

k(t, s) =

{
1
6(3t

2s − t3), s ≥ t
1
6(3s

2t − s3), s ≤ t.
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The Green’s function k has the following properties

k(t, s),
∂k

∂t
(t, s),

∂2k

∂t2
(t, s) ≥ 0 on [0, 1]× [0, 1],

and
∂3k

∂t3
(t, s) ≤ 0 on [0, 1]2 \ {(t, s)|t = s)}.
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Furthermore note that (see for example [22])

γ(t) =
1

6
(3t2 − t3),

is the unique solution of the BVP

γ(4)(t) = 0, γ(0) = γ′(0) = γ′′(1) = 0, γ′′′(1) + 1 = 0.

By direct calculation, it can be observed that

γ(t), γ′(t), γ′′(t),−γ′′′(t) ≥ 0 on [0, 1].
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We work in the space C 3[0, 1] endowed with the norm

∥u∥3 := max
j=0,...,3

{∥u(j)∥∞}, where ∥w∥∞ = sup
t∈[0,1]

|w(t)|.

Definition 3

We say that λ is an eigenvalue of the BVP (4) with a

corresponding eigenfunction u ∈ C 3[0, 1] with ∥u∥3 > 0 if the pair

(u, λ) satisfies the perturbed Hammerstein integral equation

u(t) = λ
(
γ(t)H[u] +

∫ 1

0
k(t, s)f (s, u(s), u′(s), u′′(s), u′′′(s)) ds

)
.

(8)
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We make use of the cone

K :=
{
u ∈ C 3[0, 1] : u, u′, u′′,−u′′′ ≥ 0, for every t ∈ [0, 1]

}
.

(a larger cone than the one used in [27]) and consider the sets

Kρ := {u ∈ K : ∥u∥3 < ρ}, K ρ := {u ∈ K : ∥u∥3 ≤ ρ},

∂Kρ := {u ∈ K : ∥u∥3 = ρ},

where ρ ∈ (0,+∞).
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Theorem 4 (GI [21])

Let ρ ∈ (0,+∞) and assume the following conditions hold.

(a) f ∈ C (Πρ,R) and there exist δρ ∈ C ([0, 1],R+) such that

f (t, u, v ,w , z) ≥ δρ(t), for every (t, u, v ,w , z) ∈ Πρ,

where

Πρ : [0, 1]× [0, ρ]3 × [−ρ, 0].

(b) H : K ρ → R+ is continuous and bounded. Let η
ρ
∈ [0,+∞)

be such that

H[u] ≥ η
ρ
, for every u ∈ ∂Kρ.
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Theorem (cont.)

(c) The inequality

η
ρ
+

∫ 1

0
δρ(s) ds > 0 (9)

holds.

Then the BVP (4) has a positive eigenvalue λρ with an associated

eigenfunction uρ ∈ ∂Kρ

Corollary 5

In addition to the hypotheses of Theorem 4, assume that ρ can be

chosen arbitrarily in (0,+∞). Then for every ρ there exists a

non-negative eigenfunction uρ ∈ ∂Kρ of the BVP (4) to which

corresponds a λρ ∈ (0,+∞).

G. Infante Birkhoff-Kellogg type results



Introduction
Affine cones
References

Theorem 6 (GI [21])

In addition to the hypotheses of Theorem 4 assume the following

conditions hold.

(d) There exist δρ ∈ C ([0, 1],R+) such that

f (t, u, v ,w , z) ≤ δρ(t), for every (t, u, v ,w , z) ∈ Πρ.

(e) Let ηρ ∈ [0,+∞) be such that

H[u] ≤ ηρ, for every u ∈ ∂Kρ.

Then λρ satisfies the following estimates

ρ(
ηρ +

∫ 1
0 δρ(s) ds

) ≤ λρ ≤
ρ(

η
ρ
+
∫ 1
0 δρ(s) ds

) .
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An example

Consider the BVP
u(4)(t) = λteu(t)(1 + (u′′′(t))2), t ∈ (0, 1),

u(0) = u′(0) = u′′(1) = 0,

u′′′(1) + λ
(

1
1+(u( 1

2
))2

+
∫ 1
0 t3u′′(t) dt

)
= 0.

(10)

Fix ρ ∈ (0,+∞) may take

η
ρ
(t) =

1

1 + ρ2
, ηρ(t) = 1 +

ρ

4
,

δρ(t) = t, δρ(t) = teρ(1 + ρ2).
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Thus we have

η
ρ
+

∫ 1

0
δρ(s) ds =

1

1 + ρ2
+

∫ 1

0
s ds ≥ 1

2
,

which implies that (9) is satisfied for every ρ ∈ (0,+∞).

Thus we can apply Corollary 5 and Theorem 6, obtaining
uncountably many pairs of positive eigenvalues and eigenfunctions
(uρ, λρ), where ∥uρ∥3 = ∥u′′′ρ ∥∞ = ρ and

4ρ

2eρρ2 + 2eρ + ρ+ 4
≤ λρ ≤

2ρ
(
ρ2 + 1

)
ρ2 + 3

.
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The next figure illustrates the localization of the (uρ, λρ) pairs.
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Translates of cones

Let (X , ∥ ∥) be a real Banach space and K be a cone in X . For
y ∈ X , the translate of the cone K is defined as

Ky := y + K = {y + x : x ∈ K}.

Given an open bounded subset D of X we denote DKy = D ∩ Ky ,
an open subset of Ky .

In this context, utilizing classical fixed point index, we have the
following BK-type theorem.
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Theorem 7 (Calamai and GI [7])

Let (X , ∥ ∥) be a real Banach space, K ⊂ X be a cone and D ⊂ X

be an open bounded set with y ∈ DKy and DKy ̸= Ky . Assume

that F : DKy → K is a compact map and assume that

inf
x∈∂DKy

∥F(x)∥ > 0.

Then there exist x∗ ∈ ∂DKy and λ∗ ∈ (0,+∞) such that

x∗ = y + λ∗F(x∗).
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Theorem 7 seems to be quite useful when dealing with problems
with delay effects.

Third order functional differential equations with nonlocal
boundary terms have been studied in the past, we mention here,
for example, the work of Tsamatos [31] and the subsequent
papers [11, 33, 28].

Recently Calamai and GI [7] discussed the solvability of the
following set of third order parameter-dependent functional
differential equations with functional BCs.
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u′′′(t) + λF (t, ut) = 0, t ∈ [0, 1], (11)

with initial conditions

u(t) = ψ(t), t ∈ [−r , 0], (12)

and one of the following BCs (here B[·] acts on C 1([−r , 1],R))

u(0) = u′(0) = 0, u(1) = λB[u], (13)

u(0) = u′(0) = 0, u′(1) = λB[u], (14)

u(0) = u′(0) = 0, u′′(1) = λB[u]. (15)
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The idea in this case is to rewrite the problem as an integral
equation in the space C 1([−r , 1],R):

u(t) = ψ(t) + λ
(∫ 1

0
k(t, s)F (s, us) ds + γ(t)B[u]

)
=: ψ(t) + λFu(t), t ∈ [−r , 1], (16)

and apply Theorem 7.
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Theorem 8 (Calamai and GI [7])

Let ρ ∈ (0,+∞) and assume the following further conditions hold.

(a) There exist δρ ∈ C ([0, 1],R+) such that

F (t, ϕ) ≥ δρ(t), for every (t, ϕ) ∈ [0, 1]× C 1([−r , 0],R)
with ∥ϕ∥[−r ,0],1 ≤ max{ρ, ∥ψ∥[−r ,1],1}.

(b) B : Kψ,ρ → R+ is continuous and bounded. Let η
ρ
∈ [0,+∞)

be such that

B[u] ≥ η
ρ
, for every u ∈ ∂Kψ,ρ.
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Theorem (cont.)

(c) The inequality

sup
t∈[0,1]

{
γ(t)η

ρ
+

∫ 1

0
k(t, s)δρ(s) ds

}
> 0 (17)

holds.

Then there exist λρ and uρ ∈ ∂Kψ,ρ such that the integral

equation (16) is satisfied.
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A second example

We adapt the nonlinearities studied in Example 2.6 of [21] to this
context by considering the family of FBVPs

u′′′(t)+λteu(t)+
(
u′
(
t− 1

2

))2(
1+(u′(t))2+

(
u
(
t−1

3

))2)
= 0, t ∈ (0, 1),

(18)
with the initial condition

u(t) = ψ(t), t ∈
[
−1

2
, 0
]
, (19)

with ψ(t) = H(−t)t2, and one of the three BCs (13), (14), (15),
where we fix

B[u] =
1

1 + (u(12))
2
+

∫ 1

− 1
2

t3(u′(t))2 dt.
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Now choose ρ ∈ (0,+∞). Thus we may take

η
ρ
(t) =

1

1 + ρ2
, δρ(t) = t.

Therefore, for every i = 1, 2, 3, we have

sup
t∈[0,1]

{ γi (t)

1 + ρ2
+

∫ 1

0
ki (t, s)t ds

}
≥ 1

2(1 + ρ2)
> 0,

which implies that (17) is satisfied for every ρ ∈ (0,+∞).

Thus we can apply Theorem 8, obtaining uncountably many pairs
of solutions and parameters (uρ, λρ) for the FBVPs (18)-(19)-(13),
(18)-(19)-(14) and (18)-(19)-(15).

G. Infante Birkhoff-Kellogg type results



Introduction
Affine cones
References

Fourth order case

The affine BK-type theorem has been used by Calamai and GI [8]
for the following class of BVPs:

u(4)(t) + λF (t, ut) = 0, t ∈ [0, 1], (20)

with initial conditions

u(t) = ψ(t), t ∈ [−r , 0], (21)

and one of the following BCs

u(j)(1) = λB[u], (22)

where j can be either 0 or 1, 2, 3.
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In a similar way as above we seek solutions of the integral equation

u(t) = ψ̂(t)+λ
(∫ 1

0
k(t, s)H(t)F (s, us) ds+H(t)γ(t)B[u]

)
, t ∈ [−r , 1],

(23)
by using the affine cone

K
ψ̂
= ψ̂ + K0,

where

K0 = {u ∈ C 2([−r , 1],R) : u(t) ≥ 0 ∀t ∈ [−r , 1],

and u(t) = u′(t) = u′′(t) = 0 ∀t ∈ [−r , 0]}.

A result similar to Theorem 8 holds in this case.
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A third example

We consider the family of FBVPs

u(4)(t) + λteu(t)+
(
u′′
(
t− 1

3

))2(
1 + (u′(t))2 +

(
u
(
t − 1

2

))2

+
(
u′′

(
t − 1

4

))2)
= 0, t ∈ [0, 1], (24)

with the initial condition

u(t) = ψ(t), t ∈
[
−1

2
, 0
]
, (25)

with ψ(t) = H(−t) · (1− cos t), and one of the four BCs (22).
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For example we choose j = 3, so that the functional BC is

u′′′(1) = λB[u], (26)

where we fix

B[u] =
1

1 + (u(12))
2
+

∫ 1

− 1
2

t3(u′′(t))2 dt.

Thus the function ψ̂ is given by

ψ̂(t) =

{
1− cos t, −1

2 ≤ t ≤ 0,
1
2 t

2, 0 < t ≤ 1.

Now choose ρ ∈ (0,+∞). We may take

η
ρ
(t) =

1

1 + ρ2
, δρ(t) = t.
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Therefore we have

sup
t∈[0,1]

{ 1
2 t

2

1 + ρ2
+

∫ 1

0
k(t, s)s ds

}
≥ 1

6(1 + ρ2)
> 0,

which implies that (9) is satisfied for every ρ ∈ (0,+∞).

As a consequence of Theorem 7 we obtain uncountably many pairs
of solutions and parameters (uρ, λρ) for the FBVP (24)–(25)–(26).
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Thank you very much for your attention!
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